Accessible intelligent solutions that let you be in control of your data quality across the organization.
Requirements for Successful Data Quality Automation
Designed to be used by the professional that needs to include test multiple different scenarios quickly and at scale.
Quickly adjust the models with new parameters to identify hidden patterns and correlations
Predict impacts of correlations within the data and feed into operational workflows to trigger business events
Work directly with predictive lead scoring analytics models or the data scientists on your team to define which criteria the machine learning should consider.
Quickly know the quality of your input data before it proliferates across your enterprise
Once your data is created and stored you need to plan for the management of its lifecycle. A data warehouse like Snowflake requires a solid governance plan.
Data integration comes in many styles and formats that can easily be confusing to the novice. Learn about the different types and when to use each for your benefit.
Repeatable patterns for success to scale by automation and AI driven processes. Learn from how we’ve managed to leverage these two concepts for scale.
Modern tools that run alone or together to help you scale the intelligent data story
Data quality automation is the process of using machine learning and artificial intelligence to ensure that data is of high quality and free of potential errors.
The process can include steps like making sure that data is complete, accurate, and free of duplicates. Intelligent data quality automation helps organizations improve the quality of obtained data by catching and fixing errors before they become a problem.
An automated data quality platform by Put It Forward gives organizations full control over their data and its quality.
With its use, organizations can test multiple different scenarios efficiently and identify hidden patterns or correlations by adjusting the data models with new parameters.
The automated data quality platform can also be used to predict the impacts of correlations and modify operational workflows to trigger specific business events.
There are many data quality automation benefits, including the ability to: